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ABSTRACT: In the forensic science of firearms and toolmark
identification, examiners traditionally have drawn conclusions of
identity from subjective criteria. This paper critically explores the
general validity of one proposed objective-criteria regime—that of
counting consecutive matching striations on fired bullets. Practical
considerations are discussed, as well as theoretical ones, with both
discussions viewed from the perspective of Bayesian logic. It is
concluded that drawbacks exist for this particular objective-criteria
regime, but that research and logical analysis should continue.
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Since Al Biasotti conducted his original identification-criteria
research in the 1950s, the debate over the relative virtues of objec-
tive and subjective methods in forensic firearms identification—
specifically over the virtues of counting consecutive matching stri-
ations on bullets—has blown hot and cold. Recently the debate has
heated up, in part owing to the Supreme Court’s decision in
Daubert v. Merrill Dow Pharmaceuticals, Inc. This ruling places a
premium on the demonstrated scientific validity of purported sci-
entific testimony. An objective decision-making regime, which
purportedly describes the counting of striations, appears more
likely to successfully meet a Daubert challenge than does the sub-
jective regime that currently prevails in the discipline. Thus, and in
view of its increasing popularity, this paper sets out to critically ex-
amine consecutive matching striation (CMS) models, from the
standpoint of both technical substance and the interpretation of re-
sults. The treatment of technical substance will be relatively brief,
interpretive issues less so. But before wrestling with either, and be-
cause this paper is principally addressed to practicing firearm-tool-
mark examiners, we should first review the logic of probability as
it relates to the interpretation of evidence in general and to forensic
evidence and courtroom testimony in particular.

Bayesian Analysis

Classical, or frequentist, probability theory arose from the study
of games of chance and the idea of randomness. In this framework,
when during a long series of repetitive trials the relative frequency
of an event approaches a fixed number, that number is termed the
probability of the event (1). One tends to think of classical proba-
bility methods as dealing with aggregate data and closed systems,

such as a game of chance. If we measure the height of 100 ran-
domly selected 4th graders from a particular elementary school, we
can rest assured that the calculated mean is a pretty good estimate
of the mean of another group of 100 pupils from the same school.
But what if we wish to estimate the height of a particular child who
had been absent on measuring day? The frequentist would look at
the frequency distribution of the data, do some quick calculations,
and conclude that the probability is X that the interval between
height A and height C contains the height, B, of the new pupil.
Closed system. Very clean.

But the other pupils protest. They have additional, relevant in-
formation. They inform the frequentist that the pupil is a male, is
the oldest in the class, drinks lots of milk, and has parents who are
very tall. Unwilling to invoke older, more general axioms of prob-
ability, unwilling to introduce subjective elements, our frequentist
is thus unwilling to logically evaluate this new information and
may decline to venture any estimate at all.

As it happens, Bayes’ Rule (named after Thomas Bayes, the 18th
century clergyman who first proved it) is a logical theorem that
shows us how to rationally incorporate new information into a
probability, within either closed or open, real-world, systems. In
this framework, probability is defined as the degree of belief in a
proposition or event, and is always conditioned on particular as-
sumptions. What Bayes and his successors did was to “rationalize”
the concept of probability. One of the virtues of Bayesian analysis
is that its practitioners can better analyze specific events, such as
crimes. Bayes’ Rule is thus:

P(A u B) 5 P(A) [P(B u A)/P(B)]

where

P(A) 5 the probability of A, given (or assuming) no other in-
formation. This term is called the prior probability of
A.

P(B) 5 the probability of B, given no other information.
P(A u B) 5 the probability of A, given (assuming) the truth of B.
P(B u A) 5 the probability of B, given the truth of A.

Aw 5 not A

For example, if A is tails, and B is a fair coin, P(A u B) 5 1⁄2. For
forensic purposes it’s usually preferable to use the odds form of
Bayes’ Rule, which is thus

P(A u B)/ P(Aw u B) 5 [P(A)/ P(Aw)][P(B u A)/ P(B u Aw)]

where on the right side of the equation the first term in brackets is
known as the prior odds, and the second term in brackets is known
as the likelihood ratio (LR). The left side of the equation is known
as the posterior odds, the odds we ultimately wish to know. Thus we
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have the following: posterior odds 5 prior odds 3 likelihood ratio.
In other words, we multiply the prior odds in favor of A, which are
the odds before any new information, by the likelihood ratio, which
contains the new information, to arrive at the posterior odds in fa-
vor of A, which incorporates the new information. For the court-
room, let’s substitute G (guilty) for A, and E (evidence) for B. Now
the equation reads as follows: the odds of guilty given a piece of ev-
idence 5 the odds of guilty before the evidence is presented, times
the likelihood ratio. The likelihood ratio is the probability of the ev-
idence given the defendant is guilty, divided by the probability of
the evidence given the defendant is not guilty. For firearms exam-
iners, the evidence could be, say, five maximum-CMS on a bullet.

To acquire a better intuitive feel for how Bayes’ Rule can work
in the real world, consider the following example, borrowed from
the work of Bernard Robertson and G. A. Vignaux (2). Imagine a
police officer has a portable breath analyzer in his patrol car. The
analyzer is designed to provide two answers to the relevant ques-
tion, Is this motorist over the legal limit for levels of blood alcohol?
A positive answer (over the limit) is indicated on the analyzer by a
red flashing light; a negative by a green light. No instrument is per-
fect, however; the analyzer can give false positive and false nega-
tive readings. That is, it is possible for the analyzer to flash red
when the motorist is under the legal limit, and flash green when
over the legal limit. For obvious reasons, the police department and
the local district attorney wish to minimize false positive readings.
Thus the police adjust the analyzer to give false positive readings
(red) for only 5 out of 1000 innocent motorists (a .5% rate). Unfor-
tunately this means the police department must accept a higher rate
of false negative readings (green)—for our example, “exonerating”
50 out of 1000 guilty motorists (a 5% rate).

Armed with the above information, the question we now wish to
answer is the following: What are the odds that a particular mo-
torist is over the limit if the analyzer flashes red? From the odds
form of Bayes’ Rule, we first calculate the likelihood ratio, which
is, again, the probability of obtaining the evidence (a red light)
given the motorist is over the limit (guilty), divided by the prob-
ability of obtaining the evidence given the motorist is under the
limit (not guilty). Clearly the numerator in this case is .95 (950 over
1000), the denominator .005 (5 over 1000). Dividing, we obtain a
likelihood ratio of 190.

If we stop here, how do we interpret the likelihood ratio in this
case? It simply means that, whatever the odds in favor of guilt be-
fore this test, we now must multiply those odds by 190 to arrive at
our updated assessment of the odds in favor of guilt. The likelihood
ratio measures the strength of the evidence, but it does not assess
posterior odds by itself. For that we must have the prior odds in fa-
vor of guilt.

To understand how prior odds works, imagine that our police of-
ficer was randomly stopping motorists on a busy highway at 10:00
A.M. on a Wednesday. From his past experience conducting these
random stops at this location and at this time, he estimates that
about 1 of every 150 motorists will be over the legal limit for blood
alcohol. Thus, for any particular motorist, he would plausibly esti-
mate the prior odds in favor of guilt at 1 to 149 (or, 149 to 1
against). For a “red light” case, then, the posterior odds in favor of
guilt are (1/149)(190) 5 1.28. That is, under these circumstances,
our police officer would rationally believe that the odds in favor of
this motorist being legally drunk are 1.28 to 1. (Since for odds of A
to B the equivalent probability is A/(A1B), in our case the prob-
ability of guilt is 1.28/(2.28), or 56%.)

Now let’s assume our officer is posted at this same highway at
1:30 A.M. on New Year’s Day. Let’s also assume that instead of

stopping motorists at random he is stopping only those who are
“driving drunk.” From past experience he estimates that about 4 of
every 5 of these motorists will be legally drunk. Thus, under these
circumstances, our police officer must rationally believe that the
odds in favor of a particular red-light motorist being legally drunk
are (4/1)(190) 5 760, or 760 to 1. This probability is 99.87%.

Note two things about this example, however. First, our police
officer chose not to factor in other information that a real officer
might. For example, observing that a motorist was disheveled and
holding a liquor bottle, with several more empties in the back seat,
surely would cause a real officer to make a reassessment. If he
knew enough about probability, he in fact would insert a second
likelihood ratio into the odds form of Bayes’ Rule, so long as he
was certain that this new information was independent of the re-
sults of the analyzer. The new likelihood ratio would be the prob-
ability of observing this evidence given guilt, over the probability
of observing this evidence given innocence. Mathematically, it is
perfectly legitimate to insert this new likelihood ratio, as well as
others, into the equation. Indeed, this is how a perfectly rational
jury would combine new evidence with what has already been
heard.

Second, there clearly is an element of subjectivity involved in as-
sessing prior odds in real world cases. Another police officer may
have used a different figure. Then too, imagine that you were a
driver on the New Year’s highway at 1:30 A.M., but that your er-
ratic driving had been caused by sleepiness. You also knew that
you had not consumed alcohol in the past two weeks. When you
were stopped, you might have assessed the prior probability in fa-
vor of your drunkenness at about 1 in 100,000 (it is at least possi-
ble that you forgot when you last partook). Thus if the light flashed
red, your assessment of posterior odds in favor of drunkenness was
(1/99,999)(190) 5 .0019, or .0019 to 1, or 1 to 526 in favor of
drunkenness, or 526 to 1 against drunkenness. Clearly this result
would differ from that of the police officer.

Bayesian Analysis and Forensic Science in the Courtroom

At this point it must be observed that there is no rational or sci-
entific ground for making claims of absolute certainty in any of the
traditional identification sciences, which include fingerprint, docu-
ment, firearms, toolmark, and shoe and tire-tread analysis. Case-
specific conclusions of identity rest on a fundamental proposition,
or hypothesis; namely, that no two fingerprints, bullets, etc., from
different sources will appear sufficiently similar to induce a com-
petent forensic examiner to posit a common source. But as any lo-
gician or philosopher of science would insist, no hypothesis can be
proved absolutely. In this case, proof could be attained only if at the
same instant every competent examiner compared every possible
combination of prints or bullets, with no resultant errors—an im-
possible task, with the proof valid only for an instant. From this
also emerges the important distinction between simple facts and
hypotheses (or theories). I have observed directly that I, my family,
friends, and relatives have eight fingers and two thumbs. This is a
simple fact and is unchallenged. But then to assert that all human
beings (or 99%, or 99.999%) have eight fingers and two thumbs is
an act of inductive inference—it is to set forth a hypothesis.

Consequently, statements asserting identity often include the
following: “with a reasonable degree of scientific certainty; practi-
cal certainty; moral certainty; beyond any credible doubt; a practi-
cal impossibility of dissimilar origin.” So long as traditional, sub-
jective forensic examinations are conducted, this kind of
concluding terminology is acceptable (3). But when we consider



more objective decision-making regimes, quantitative conclusions
become possible, and therefore desirable—provided they are un-
derstood by examiner and jury alike.

We mention this here so the reader will not be tempted to dismiss
a probabilistic analysis on the grounds that (A) absolute proof of
identity conclusions is possible, (B) the ability to successfully han-
dle a hostile cross-examination trumps science and logic, and/or
(C) a CMS model is an identification model, not a probabilistic
model. (B) is a matter of opinion, but we would hope that good sci-
ence and logic determine the content of expert testimony, not the
structure of the justice system. I have just argued that (A) is false,
and as we hope to show, (C) also is false.

In the meantime, some authorities on evidence interpretation in
the courtroom have insisted that, if possible, expert witnesses
should provide the jury with likelihood ratios, not posterior odds
(4). The reasons for this recommendation are several. Most impor-
tant perhaps, it is the province of the jury to decide the ultimate is-
sue of guilt. If an expert witness is in effect testifying to the poste-
rior odds of guilt, he is usurping the obligation of the jury. He is
substituting his judgment for that of the jury. Related to this, recall
the example of the breath analyzer. Assessing prior odds can be and
often is a subjective process. Best to leave as much subjectivity as
possible to the jury. Moreover, if a witness provides the jury with a
likelihood ratio, the jury can—at least theoretically—combine this
evidence with evidence offered by other witnesses, as already ob-
served. But testimony on the ultimate issue (posterior odds) cannot
logically be combined with other evidence.

Finally, for the expert witness to use a prior that truly reflects her
belief would result in the double counting of evidence. A firearms
examiner might estimate, from experience, that one-half the
firearms submitted to her laboratory unit were used in the crime al-
leged, and thus that one-half the defendants were guilty (more
about this logical leap shortly). Thus her prior odds that a bullet
passed through a particular barrel for a new case could be 1 to 1.
But these odds indirectly incorporate information (from the police
investigation, for example) that the court has not commissioned the
examiner to judge. The court has commissioned the jury to judge
it; for the examiner to use these odds in calculating a posterior-odds
conclusion would result in the jury counting some evidence twice.

To solve this essentially legal problem, the examiner must as-
sume a “naive” prior. That is, she must assume no knowledge of
laboratory submission history and no knowledge of the crime, ex-
cept to the extent that it occurred in a certain place and involved a
firearm (if only one was used). Thus the naive prior odds in favor
of the guilt of a single defendant would be 1/(the number of
firearms owners in the relevant geographic area, minus 1). Of
course the question of what constitutes the relevant geographic area
could be a source of endless debate. Obtaining good figures for the
number of firearms owners also could prove difficult.

In contrast to posterior odds, the likelihood ratio has both logical
and juridical appeal. It is a direct measure of the strength of any
piece of evidence. Evidence that is strong will have a high LR, evi-
dence that is weak will have a low LR. Evidence that is useless, of
no value, will have a likelihood ratio of 1/1 5 1. For example, if an
expert testifies that the blood stain found at the crime scene was red-
dish in color, and that the defendant’s blood is also reddish in color,
the LR would be one—the probability of a reddish blood stain if the
defendant is guilty is the same as the probability of a reddish blood
stain if the defendant is not guilty, i.e., one. This evidence is useless.

[As an aside, it should also be mentioned here that Bayes’ theo-
rem as applied to forensic evidence is actually more flexible than it
has been presented up to now. The jury, logically, must compare

the complete prosecution hypothesis (presumably that the defen-
dant is guilty) with the complete defense hypothesis. For the latter
there might exist a variety of possibilities. The simple case is where
the defense asserts the defendant is not guilty and that some other
unknown person is guilty. Or the defense may assert that another
named person is the guilty party, or that the guilty party is a mem-
ber of a certain subgroup, either of which can affect the denomina-
tor of the likelihood ratio. Thus, for the LR, instead of speaking
about the probability of the evidence given guilt and not guilt, we
can speak of the probability of the evidence given the prosecution
and defense hypotheses. Present CMS regimes can deal with only
the simple case in which the defense asserts the bullet was fired
from an unknown firearm with similar rifling characteristics.]

So, from the foregoing, is it possible to provide likelihood ratios
in forensic firearms examination? The answer is maybe. For the
moment, however, most ratios presented in court would be of de-
batable value, as we’ll see.

CMS Decision Criteria

Biasotti was the first—in print—to suggest the possibility of
counting consecutive matching striations (or “lines”) on bullets for
use as a criterion for identifying a particular firearm as having fired
a particular bullet (5). Further empirical work was undertaken at
the California Criminalistics Institute—although this body of re-
search remains largely unpublished—and recently technical arti-
cles have appeared that invoked the CMS-count approach (6,7).
The general procedure is first to fire numerous bullets through
many firearms of the same make and model. Keeping good records,
the researcher then microscopically compares specimens known to
have been fired from the same barrel and compares specimens
known to have been fired from different barrels, counting how
many striations match well in multiple “runs” of CMS. Biasotti
found no .38 Special caliber lead bullets fired from different Smith
& Wesson revolver barrels that displayed more than 3 CMS, and no
metal-jacketed bullets that displayed more than 4 CMS. His clear
suggestion was that, with further validation and breadth of re-
search, examiners could reach conclusions of identity for firearms
when CMS counts exceeded fixed threshold values. (A Bayesian
approach was not taken. The analytical and interpretational errors
that this avoidance sometimes can give rise to are discussed later.)

In the simple max-CMS model discussed here, by definition, the
only CMS run on a bullet that matters is the one—or more—fea-
turing the maximum CMS count. After the data are collected, a his-
togram can be plotted showing how the max-CMS values vary with
the probability of finding them under the comparison microscope.
Two data sets can be plotted, one for bullets fired from the same
barrel (SG for same-gun) and one for those fired from different bar-
rels (DG for different-gun). A hypothetical histogram is shown in
Fig. 1.

Excluding class evidence for the moment, to calculate a likeli-
hood ratio from the data set is straightforward. For any max-CMS,
simply divide the SG probability by the DG probability (see Table
1 below). Though these data are hypothetical, note that in this sim-
ple model they yield LRs greater-than-one only for max-CMS of
three or more. A dash indicates no CMS observations were ef-
fected.

The LR evidence for a comparison with a max-CMS count of six
could be presented in court using, for example, either of two state-
ments:

(1) This result is 110 times more likely if the bullet passed
through this barrel than through an unknown barrel with similar ri-
fling characteristics. Or,
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(2) Whatever the jury’s present judgment of the odds in favor of
the defendant’s guilt, multiply those odds by 110, assuming that
only the defendant could have discharged the firearm.

(The qualifying phrase in #2 points up a complication. The jury
decides the issue of guilty/not guilty. Yet the firearms examiner is
providing a likelihood ratio that directly relates only to the odds
that a bullet passed through a particular barrel. To link the posterior
odds of guilt to the provided LR requires either that the qualifying
phrase above be included; or that the jury intuitively discount the
LR as additional evidence is presented bearing on the odds that the
defendant was/was not the shooter; or that the jury rationally dis-
count the LR. Though beyond the scope of this paper, and beyond
the direct concern of the firearms examiner, rational discounting
theoretically can be achieved by considering additional, interven-
ing hypotheses and by invoking the law of total probability (8).) It
also should be mentioned that the numerical LR testimony can be
supplemented by verbal add-ons if the examiner wishes. With LRs
between, say, 100 to 1000 for example, the examiner could state
that the results constitute weak, moderately strong, strong, or very
strong (pick one) evidence.

Provided the data set incorporates a sufficiently large body of
data from quality research, curve fitting is unnecessary, perhaps
even undesirable from a Bayesian perspective. But it is unavoid-
able for the higher CMS regions where empirical data do not exist.
For our hypothetical example, if seven max-CMS are observed the
examiner clearly has no denominator with which to calculate the
LR. She must rely on extrapolation of the data—hence the need for
using a mathematical probability distribution. This would be both
rational and defensible provided the extrapolation remained within
reasonable limits. For the kind of discrete data discussed here, the
Poisson distribution seems appropriate:

P(û) u (. . .) 5 e2l lû/û!,

where û is the max-CMS count and l is the weighted average max-
CMS count from actual data. For our hypothetical data the
weighted averages are 3.91 and 1.32 for the SG and DG data, re-
spectively. The results are presented in Table 2 below.

Concerning the technical substance of a Biasotti-style CMS
counting regime, doubtless it offers numerous theoretical and
practical benefits. It is inherently more scientific than the subjec-
tive regime currently used by the vast majority of examiners and
thus perhaps more likely to successfully pass as a scientific the-
ory or technique at a Daubert hearing. In regards to the testabil-
ity and error rate guidelines stemming from this ruling, certainly
the CMS regime is testable and with far more research could be
deeply tested. True, conclusions resting on a solid CMS regime
would have no error rate as such, since it’s a probability model,
and there can exist problems such as evidence and evidence/test-
fire mixups, the counting of CMS that prove too subjective, and
faulty research. Still, these can be checked, as in DNA regimes,
with collective simulations or tests that compare LRs for known-
non-matches to LRs for known matches. Using pristine bullets,
LRs for known matches should be relatively high, non-matches
uniformly low.

FIG. 1—Histogram using hypothetical data.

TABLE 1—Hypothetical max-CMS probabilities and LRs.

max-CMS (1) 5 Pr|SG (2) 5 Pr|DG LR 5 (1) / (2)

0 .030 .220 .136
1 .070 .379 .185
2 .110 .300 .367
3 .190 .070 2.71
4 .220 .020 11.0
5 .200 .010 20.0
6 .110 .001 110
7 .050 — —
8 .020 — —
9 — — —



A well researched CMS regime could result in greater confi-
dence being placed in examiner conclusions, inasmuch as they
largely would rest on the validity of published research rather than
on examiner appeals in court to the trustworthiness of subjective
results, or on appeals to the results of relatively few proficiency
tests. Other benefits: photomicrographs possibly could be used by
other examiners to review conclusions; broad research on CMS
counting, which included all types of barrels, would obviate the
need for examiners to invoke any theory of toolmark uniqueness
(any so-called subclass marks on bullets would be insinuated into
the research data at a frequency roughly similar to that in the real-
world barrel population, and thus be insinuated into the LRs); with
the use of LRs, there would be none of the “falling off the cliff” that
sometimes exists when examiners draw a bright line between con-
clusions of identity and conclusions of inconclusive, i.e., lesser de-
grees of probative striation evidence would not be effectively ig-
nored; and, finally, there could be fewer professional risks to
individual examiners. Leaving aside for the moment the question
of variation in counting CMS and the language of the law, fixed de-
cision rules imply that an examiner would be testifying to the ob-
jective results of her examination, not to her subjective opinion. If
the results are mistaken, the fault must lie either with the validation
research or with quality control in the laboratory. Only the latter
could implicate the examiner (provided she wasn’t a key contribu-
tor to the validation research).

Then there is the issue of bias. A weakness of subjective exami-
nations is what one would presume is their greater vulnerability to
various sources of possible bias. One source, for example, is the
written account of the crime that the contributing agency usually
submits with the evidence. Therein a suspect is often implicated.
No “control” suspects are mentioned, nor are control “evidence”
samples submitted. In one experiment, a group of hair examiner
trainees was divided in half; subgroup A was given hair samples
provided in the usual fashion, from the crime scene and from one
suspect; subgroup B was provided samples from the crime scene
and from five possible suspects. In actuality the crime scene hair
matched none of the suspects’ hair, but 30.8% of those in subgroup
A concluded they did match the suspect. Only 3.8% of those in sub-
group B concluded they matched a suspect (9).

Hair matching, like present-day firearm identification, in the fi-
nal analysis is subjective. Had these students been armed with
clear-cut objective matching criteria, and in drawing their conclu-
sions instructed not to deviate from these criteria without good rea-
son, the results of subgroup A would doubtless have been closer to
those of subgroup B. Objective criteria allow the examiner to bet-

ter insulate himself from all sorts of outside factors that conceiv-
ably can influence results.

Practical Difficulties

Nevertheless, benefits notwithstanding, there clearly exist prac-
tical difficulties with a CMS regime. Some critics of counting CMS
argue that it oversimplifies reality, and they point to the subtleties
of pattern recognition that defy quantification and objectification.
True, counting striations simplifies, but to a scientist simplicity is a
virtue. Astrophysicists calculate the motions of heavenly bodies by
hypothetically reducing an irregular mass with size and shape to a
point mass with no size or shape. And their predictions are re-
markably accurate. Moreover, the human brain often discerns “ob-
vious” patterns from meaningless jumble (e.g., faces and objects in
clouds, canals on Mars, the man-in-the-moon, and “trends” in the
random, successive changes in common stock prices). The issue re-
ally reduces to what magnitude of LRs one can expect from a CMS
regime. If typical LRs are in the neighborhood of 10 to 100, then
the critics would perhaps be right. The strength of this kind of evi-
dence is relatively low.

Next comes the question of subjectivity in counting striations.
Interestingly, Evett and Williams conducted a test in England and
Wales in which fingerprint examiners were given 10 sets of latent
and ink prints to compare. One set was from different persons but
with the prints modified to show many points of similarity. The ex-
aminers were asked to conclude if the prints in each set were from
the same source, and if they concluded they were, to determine also
the number of points of similarity. Not a single examiner misiden-
tified the severest test set, the modified set. But counting points of
similarity proved highly subjective, examiner counts varying from
10 to 40 for one set, 8 to 26 for another, and 14 to 56 for a third (10).
Thus if a 16 point or greater standard were used, some examiners
would have reported the results as inconclusive, while most would
have been happy to go into court with a positive identification.

Does this degree of subjectivity in counting “objective” points of
similarity also hold for qualified firearm-toolmark examiners when
counting CMS? With consistent, national training, individual judg-
ments on the quality and quantity of striations should converge; but
they will never be unanimous. This simply means that examiners
would sometimes report different LRs for the same evidence bul-
let. This is not so bad as it might first appear. It is merely the ana-
logue of examiners, using traditional methods, drawing two differ-
ent conclusions about the same bullet: identification or
inconclusive. Differing LRs simply reflect the fact that even objec-
tive regimes can contain subjective elements.

A more serious problem: obtaining a truly valid and usable CMS
regime would necessitate a large-scale research program involving
numerous varieties of bullets and barrels, tens of thousands of test
firings, and possibly careful mathematical curve fitting. The need
to analyze multiple runs of CMS only complicates matters, but
without this kind of analysis much information is lost. Indeed, the
firearm-toolmark community could commit a long-term mistake by
underestimating the scope of the research required to truly validate
a CMS regime. As the history of DNA validation has revealed, hard
scientific research and the attendant statistical analyses can elicit
equally hard questions that scrutinize every level of analysis and
interpretation. Have disinterested “control” examiners been used in
the research? Are the groupings of research barrels representative
of the current barrel population? Can we conclusively show that
they are, or why they need not be? Can an examiner clearly show
that, say, the Poisson function provides a better fit to the data than
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TABLE 2—Poisson distributions and LRs for hypothetical max-CMS
data.

max-CMS (1) 5 Pr(x)|SG (2) 5 Pr(x)|DG LR 5 (1) / (2)

0 .020 .267 .075
1 .078 .353 .221
2 .153 .233 .657
3 .200 .102 1.96
4 .195 .034 5.74
5 .153 .0089 17.2
6 .099 .0020 49.5
7 .056 .00037 151
8 .027 .000061 443
9 .0118 .000009 1311

10 .0046 .0000012 3833



960 JOURNAL OF FORENSIC SCIENCES

an alternative? Should the fitted curves or the actual probability
data be used across-the-board for LR calculations? Why? The list
goes on, but the foregoing questions are the simple ones. The point
is, if CMS criteria are widely adopted, we can rest assured that
tough questions eventually will be raised in court, possibly by high-
powered scientists and statisticians hired by opposing counsel.

The final practical difficulty involves explaining and defending
in the courtroom conclusions resting on a CMS regime. Examiners
schooled in subjective methods may fail to understand or appreci-
ate the research and the logic of interpreting this kind of evidence.
Thus they may find it difficult to explain them to judge and jury.
The variation in examiner LRs discussed above, while logically
harmless, also could prove difficult to explain and therefore be
legally harmful. It can be done; DNA examiners successfully wres-
tle with these difficulties regularly. But if firearm examiners wres-
tle with them less successfully, it could be a blow to the profession
and to the administration of justice.

Theoretical Problems

If the foregoing practical problems are important, the more the-
oretical problems associated with a CMS regime also must be ex-
amined. To begin, when examining bullets the examiner looks for
evidence in two categories. The first involves the rifling impres-
sions left on a bullet by the barrel. In number, direction of twist,
and widths, the impressions on test fired bullets must match those
on the evidence bullets. This is class evidence; it can greatly re-
strict the number of suspect barrels. The second, of course, in-
volves the agreement of microscopic, striated marks within the ri-
fling impressions, the very type of evidence we have been
discussing. A likelihood ratio can theoretically be calculated for
each—and since they are independent, multiplied together—but
one for class evidence would require knowing the proportion of
firearms within the relevant population that share the class char-
acteristics of the evidence firearm. Let’s say a homicide occurs in
Denver, and the firearm population of Colorado is taken as the

relevant population of firearms. What proportion of these match
in rifling characteristics the suspected weapon? We don’t know.
No database exists, and at the moment it seems unlikely that one
could be constructed. Manufacturers are sometimes reluctant to
release past production figures, let alone current ones. And one
cannot establish with confidence what happens to firearms once
in the hands of the consumer. Estimates can perhaps be made,
which would be better than nothing, but these would be rough and
endlessly challenged in court. And without the class characteris-
tics LR, the strength of an examiner’s testimony would be dimin-
ished, and in particular cases could be immensely diminished.
This is not a weakness in the CMS regime per se, but it does log-
ically flow from the kind of probabilistic analysis that a CMS
regime requires.

A more serious weakness in CMS counting, however, is that ev-
idence bullets are not fired in new, clean barrels, as would be the
research bullets. Real barrels change over time. A bullet fired from
a new, clean barrel might, under the microscope, appear nothing
like one fired later from the same barrel. To the point, a barrel’s in-
terior can become worn, corroded, or the object of willful tamper-
ing in the span of time between the crime and the recovery of test
fired bullets. One can argue that this merely results in a lower max-
CMS count, which reduces the LR, which in turn favors the de-
fense. But a little thought and a study of Fig. 2 shows this is not
necessarily the case.

This plot—and continuing with the earlier hypothetical data—
shows the kind of shift needed if we assume a barrel has changed
from the time the evidence bullet was fired to the time the test bul-
lets were fired (CG 5 changed-gun). That is to say, the SG prob-
ability data must shift downward to some position between the
original SG and DG probability data. Why? Because we are less
likely to find, say, five, or six, or any particular number of max-
CMS on bullets from the same barrel, if that barrel changed be-
tween firings. The SG data, derived from barrels that changed very
little, no longer apply. Meanwhile, the DG probability data would
shift little if at all. The probabilities for chance striation matches

FIG. 2–Histogram using hypothetical data, including changed-gun data.



should not change significantly merely because a single barrel
changes within the population of barrels.

To illustrate the problem, first consider scenario 1: an examiner
is provided with an evidence pistol seized from the suspect imme-
diately after the crime. Also provided was a pristine, metal-jack-
eted evidence bullet recovered from the victim’s body. The barrel
appears new and relatively clean, and we’ll assume no changes in
the barrel have occurred from corrosion. Test bullets are collected
and compared to the evidence bullet, and the examiner finds six
max-CMS on a land impression. He next consults the appropriate
research data for this variety of bullet and barrel and finds the prob-
abilities of finding six max-CMS are .110 and .001 for the SG and
DG, respectively. Thus the calculated likelihood ratio is .110/.001
5 110. Since the research conditions approximated the actual con-
ditions for barrel and evidence bullet—though in actuality this can
never be strictly known—this ratio is well supported and realistic.

Now consider scenario 2: all the conditions are the same as
above except for the barrel bore, which has changed somewhat.
Note that the probability of now finding four max-CMS using the
CG data is approximately equal to the probability of finding six
max-CMS in scenario 1, i.e., .110. Of course, in actuality we can-
not know the actual appearance of a CG histogram other than that
it will fall between the original SG and DG probability data. There
is no way to research it adequately, no way to know how much an
evidence barrel has changed, and thus no way to know how much
the SG data should shift when a barrel changes. All the examiner
can do is use the original SG data derived from clean, relatively un-
changed research barrels. Thus, at four max-CMS, the probabilities
for scenario 2 are .220 and .020, which yields a likelihood ratio of
11.0. At first glance this figure seems reasonable, but the problem
is that if we had used the hypothetical CG data which actually fit
these circumstances, then the examiner’s calculated LR would be
.110/.020 5 5.5. That is to say, by using the SG data instead of the
CG data (again, the CG data represent reality but are knowable in
detail only in a simulation such as this), the examiner, in this con-
text, has overstated the strength of the evidence by a factor of 2.

(As an aside, it appears that any future automated “identifica-
tion” system would suffer from the same malady. Present-day au-
tomated systems score and rank comparisons, but the machines do
not attempt to effect identifications or determine LRs. After con-
ducting validation research involving same-guns and different-
guns, a system conceivably could calculate LRs indirectly from a
scoring algorithm. But the changed-barrel problem would remain.)

How serious is this theoretical weakness? On the one hand, it
could be regarded as relatively benign. LRs in the neighborhood of
5.5 and 11 would be judged by the courts as weak evidence, and
most actual cases probably would involve differences of similar
magnitude. For practical legal purposes, differences of this kind of-
ten would be ignored. Moreover, the LR of 11 would in fact rest on
the best information available to the examiner using a CMS model,
and no set of information is perfect and complete, expecially in the
context of the legal process.

Conversely, however, one can argue that a LR that is too-high by
a factor of 2 is not immaterial, that when all the evidence is ac-
counted for in a juror’s mind, the “doubling” of the LR could mean
the difference between a vote for conviction and acquittal. Then
too, is it acceptable for an examiner to present in court a LR that is
known to be very likely higher—and not randomly higher or
lower—than would be the case given perfect knowledge, while at
the same time he is unable to provide a solid estimate of how much
higher? It is difficult to conceive how the magnitude of a barrel’s
changes could be reliably known to an investigator or examiner, or

how the magnitude of change could be reliably measured. A more
sophisticated multiple-run model is no more removed from this dif-
ficulty.

Research to Date

But what about the CMS research that already has been con-
ducted? Is it useful? An honest answer is that it is only marginally
so. Not only does the concept appear to fall short in the ways just
presented, but the research-to-date suffers from further weak-
nesses. First, as already observed, the existing research findings are
directly relevant for only particular barrel manufacturing methods,
barrel lengths, barrel hardnesses, bullet hardnesses, and bullet sur-
face materials. With much additional research, some of these vari-
ables may turn out irrelevant, but good scientific practice demands
that all relevant variables be accounted for, and only research will
reveal which variables are irrelevant, or at least of lesser impor-
tance. So far there has been a paucity of published, empirical va-
lidity research since Biasotti’s 1959 article, and thus for a case with
differing circumstances, drawing conclusions from the limited ex-
isting data is unjustified.

The remaining faults are interpretational. One of these is an un-
fortunate tendency, or at least suggestion, to latch onto a fixed “de-
cision number.” That is, if in a certain study no more than five CMS
were found for known non-matches, then it is tempting to conclude
that, for the research conditions, any CMS-count above five con-
stitutes an identification. This is incomplete and misleading. It is
akin to a proclamation (fictional) in the 1970s by nuclear engineers
that a serious nuclear reactor accident had never happened and
therefore wouldn’t happen. The mathematical, different-gun prob-
ability distribution must approach the CMS axis asymptotically. It
will never reach zero. The CMS model is most properly termed a
probability model, not an identification model, and the selection of
an appropriate mathematical probability distribution is necessary
before making inferences where no actual probability data exist.

A second interpretational fault is sometimes ignoring the signif-
icance of the same-gun histogram (or probability distribution). It
may seem quite powerful to testify that the probability of finding,
say, eight max-CMS on a given bullet, assuming it was fired from
a different gun, is only 1 in 1000. But what if the probability of
finding eight max-CMS on a given bullet, assuming it was fired
from the suspect’s gun (same-gun data), is also 1 in 1000? In a hy-
pothetical case such as this, the CMS evidence is useless, in no
sense relevant to guilt or innocence. The likelihood ratio would be
1. A same-gun probability of 1 in 500? This would constitute very
weak evidence, with the LR 5 2. To take a non-firearms example,
imagine that a daughter accuses her father of molesting her during
childhood, a charge based on recovered memory techniques. At the
trial the therapist testifies that the daughter currently has dreams of
her father molesting her as a child. He further insists that research
shows that only 1 in 200 women (these are fictitious figures) who
were never molested by their fathers have such dreams. But what
he neglects to mention is that only 1 in 120 women who were mo-
lested by their fathers have such dreams. Thus the likelihood ratio
is 1.67—very weak evidence in favor of childhood molestation.

Finally, invoking only the different-gun histogram (the denomi-
nator of the LR) invites the examiner, the judge, and the jury to rea-
son illogically about the evidence. This occurs when one trans-
poses the conditional, i.e., when the probability of the evidence
assuming guilt is mistakenly thought to be, and presented as, the
probability of guilt assuming the evidence (again treating guilt as
tantamount to the evidence bullet being fired from the suspect bar-
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rel). The probability of a dorsal fin, given a shark, is not equal to
the probability of a shark, given a dorsal fin. Trivial examples are
obvious, but real world ones are not always so. Probability models
for bullets have been theorized that suggest the probability of
chance striation matches, given the bullets are from different bar-
rels (11). One might estimate, for example, that the probability is
one in 100,000 that a bullet from one barrel will accidently match
a bullet from another barrel. In symbols

P(E u not guilty) 5 P(striation match u

different barrel) 5 1/100,000.

The error would occur if an examiner testified that, given the stria-
tion match, the probability that the evidence bullet originated from
a non-suspect barrel is 1 in 100,000. In symbols, the examiner is as-
serting that P(different barrel u striation match) 5 1/100,000. This
is an easy trap to fall into, but clearly the 1/100,000 figure would
belong in the denominator of a likelihood ratio.

Conclusion

It is arguably unfair to draw harsh conclusions about a CMS
regime without subjecting its dominant rival—the traditional, sub-
jective regime—to an equally critical examination. Nevertheless,
and for now setting aside the practical difficulties, it appears that
the inability of this probability model to deal rigorously with barrel
changes is a weakness worthy of note, the seriousness of which
is debatable (it’s quite possible that further research and hard think-
ing could resolve the issue satisfactorily). Indeed, some questions
do arise regarding the scientific status of present day subjective
examinations; but with measures such as professional certification
and rigorous validation/proficiency testing, the traditional, subjec-
tive examination regime can strengthen its scientific grounding.
Whether CMS or objective-automated regimes eventually
supplants it remains to be seen, and of course, research and logical
analysis should continue, even accelerate. At least for the moment,
however, the benefit of the doubt should go to the traditional
methods.
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